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In the case of an isotropic body this latter holds for a Poisson’s ratio of one-half. 
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Within the framework of the plane problem of the theory of elasticity, we. 
consider the eq~librium of an elastic plane with thin different elastic inclu- 
sions, situated along a straight line. We give the formulation of the boundary 
value problems on the basis of the approach adopted from the theory of a thin 

airfoil, We present an effective method for obtaining the exact solution ofa 
general class of problems of the above indicated type. We analyze theeffect 

of the inclusions on the strength and we formulate criteria for the initiation 
of brittle fracture. 

I, Forrnui~t~oR of the boundary value problem, In many materials 
which represent a practical interest, we frequently encounter thin elastic inclusions of 

a different material. Such are, for example, layers of graphite in cast iron, areas of oxi- 

dined metal in alloys, layers of low strength clay or sand in tectonic faults, welds, etc. 
The inclusions in the basic material lead to stress ~ncentrations which affect essentially 
the strength properties of the material as a whole. 

We consider the deformation of an unbounded, elastic, homogeneous, isotropic space 
with an arbitrary number of thin cylindrical inclusions of a different elastic material. 
Let the plane XII be some cross section of these cylinders. We assume that each of 
these inclusions has in the plane zy an axis of symmetry which coincides with the s - 
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axis (Fig. 1). In the problems to be examined we consider that the stresses and strains 
are independent of the coordinate z (a combination of plane strain and longitudinal 
shear, anti-plane strain). 

We denote by h (x) the thickness of 
.rl the inclusion and we assume that the 

conditions of rigid contact hold at the 

Fig. 1 

contiguous points of the boundary of the 
basic material and of the inclusion. 

Usually, the operation of coupling of 
different materials is accompanied by 
the formation of stresses even in the ab- 

sence of external loads ; these will be 
called initial residual or technological stresses. 

We assume that for each inclusion the following conditions hold : 

h(z)<Zl, ldh/dsl(( 1 (1.1) 

where 21 is the length of the inclusion. In this case, for the effective solving of the 
elasticity theory problems,we can apply the following method, taken from the theory of 

a thin airfoil [l] : we discard the boundary conditions corresponding to the boundaries of 
the inclusions on the x-axis omitting the small quantities in the boundary conditions 

and we solve the obtained boundary value problem for the set L of the corresponding 
mathematical cuts along the x-axis. Adding to the initial coordinates of the material 

point its displacements, obtained from the approximate solution, we get the position of 
this point in the deformed state. 

We will assume that the external load is applied only at infinity. Therefore, the equi- 
librium conditions of the thin inclusions have the form 

[(3J = ]‘t,vl = ]‘t,,l = 0 on L (1.2) 

Here or, or,, txy, axz, ryz are stresses ; the quantity [A] denotes the difference 

A + - A-. The plus and minus signs correspond to the values of the corresponding func- 
tions at the upper and lower sides of the cuts L, i.e. at the upper and lower boundaries 
of the inclusions. Consequently, the stresses ot,, ‘c,~ and ‘c,, are continuous at the cuts 
L; therefore, they can be written with the indices plus and minus omitted. 

Hooke’s law for thin elastic inclusions can be written as 

for y = 0, x on L 

(JY = h, 181 + 21qvo (x) z,y = h&l + 2h,u, (4, %z = h&l+ (1.3) 

+ 2hs %&4 

h= 
El 

~ &=+p h(r) ’ 

Here E,, p2, p3 are the Young’s modulus and the shear moduli of the orthotropic in- 
clusions, characterizing its strain normal to the cut, the transverse and longitudinal shear 

strains, respectively ; u, v, w are the components of the displacement vector of the 
material point in the basic material ; &,, 2q,, 2w, are the components of the given 
discontinuity of the displacement along the cuts L (residual effect). 
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The Eqs. (1.3) represent the boundary conditions of the formulated problem. If the 
exterior load is equal to zero, then we obtain the problem on the determination of the 
initial stresses occurring because of the technological (residual) stress. 

For example, we assume that at the beginning thin cavities were cut out from the elas- 
tic body and then inclusions from a different elastic material, coinciding exactly in form 

with the corresponding cavities but having a lower temperature than the basic material, 
have been inserted in these cavities. Obviously, after the leveling of the temperatures, 
the residual effect is 

2~ = 2cchAT, 2~ = 2w, = 0 

Here AT is the difference of the initial temperatures and a is the temperature coeffi- 
cient of linear expansion. 

The quantities hl, h, and lis are similar to the elastic spring constants in Winkler’s 

foundation theory. 

The solution of the boundary value problem (1.3) can be represented [ZJ in the form 
of the sum of the solutions of the following three boundary value problems for the upper 
half-plane corresponding to normal tension, transverse shear and longitudinal shear. 

1’. Normal tension 

for y = 0, z on L 0, = 2&v+ + 2k,v, 

for y = 0 ZXY = z,, = 0 

2’. Transverse shear 

(1.4) 

for y = 0, 5 on L Zxy = 2h,u+ + 2h,uo 

for y = 0 (TV = IT, = 0 

3’. Longitudinal shear 

(1.5) 

for y = 0, x on L z,, = 2&w+ + 2h,w, 0. f-3) 
for _!/ = 0 cr, = 7.&Y = 0 

The given stresses at infinity can also be always represented in the form of the super- 
position of stresses, symmetric and antisymmetric with respect to the x-axis. The bound- 

ary conditions (1.4) and (1.5) correspond to plane strain, where in the Case 1’ the dis- 
placement Y, while in Case 2’ the displacement r,~, are odd functions of 9. In Case 3’ 

(longitudinal shear) the displacement is an odd function of y. 
We give the Kolosov- Muskhelishvili [ 31 representation in terms of the complex poten- 

tials d, (z), ‘J! (z) and f (z), which are analytic functions of the complex variable 
z = x + iy in the domain occupied by the body, i.e. in the exterior of the cuts L 

a, +a,=4Re0(z) CL 7) 
-- 

=ar - r=xy = 0 (2) + @ (2) + Q (z) + (2 - Z) CD’ (2) 

2t” 1 
$+i%) =x~{(z)-~a,o-~~-((z-~)o’(z) 

w = Re f (z), a+,.. + ir,, =pfT) 

51 (2) = ZCD’ (2) + Y (2) 

Here p and v are the shear modulus and Poisson’s ratio of the basic material x= 3 -4~ 
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for the state of plane strain and x = (3 - Y) / (1 + v) for the state of plane stress. 
For the sake of simplicity, we will assume that the stresses at infinity are equal tozero. 

The method of superposition allows us to reduce to this case the problem with an arbit- 
rary nonzero state of stress at infinity. In this case, we can obtain, with the aid of the 

representation (1.7), the following formulas for the problems (1.4)-(1.6): 

1”. Normal tension 

f’ (2) = 0, 51 (2) = 0 (1.8) 

for y=O (I,= cru=2Re@(z),z:= 

2’. Transverse shear 

f’ (2) = 0, 2a (2) + Q (2) = 0 
xi-1 Reo(z) 

(1.9) 
for y=O r,.=Im Q(z),u=-- 

4cL 
3e. Longitudinal shear 

@ (z) = 0, 52 (z) = 0 

for y=O Tzyz = - p Im f’ (z), w = Re f (z) (1.10) 
Here 

0’ (z) = Q (z), cp’ (z) = Q, (z) (1.11) 

Obviously, any linear boundary value problem of the theory of elasticity can be reduced 
to the linear combination of normal tension, longitudinal shear and transverse shear, if 

the boundary of the body is situated along the s-axis. The indicated method for the 

decomposition of any boundary value problem of this type into the sum of three problems 
(for the normal tension, the longitudinal and transverse shear) is expecially convenient 
for the solving of concrete problems, since the mathematical problems for each of these 

problems are equivalent. It is sufficient to obtain, for example, the solution for the normal 
tension; the solutions for the other cases are obtained with the aid of obvious substitutions, 

Therefore, in the sequel we will restrict ourselves only to the examination of the normal 
tension. 

Making use of the relations (1.8). from the boundary conditions (1.4) we obtain the 
following boundary value problem for the determination of the function cp (2): 

for y = 0, t on L 

Re(p’(z) = y AI (4 Im cp (4 + h (4 UO (4 (1.12) 

for y = 0, 2 outside L Imcp (z) = 0 

The solution in closed form of the boundary value problem (1.12) for and arbitrary func- 
tion h,(z) is unattainable. Apparently, Poincargwas the first who has encountered problems 
of this type in the solving of some hydrodynamic problems of the theory of tides. 

We restrict ourselves to the solution of some classes of boundary value problems(l.12); 
these solutions can be found in closed form and they include practically the most impor- 
tant cases. 

2. The rffactlv8 rolution of L general clrur of boundary value 
problems. We consider the boundary value problem (1.12) with the coefficient h,(s) 

of the following form : 



Some problems of the nonhomogeneous elasticity theory 503 

Here P (x) and Q(x) are arbitrary polynomials with real coefficients and the function 
X+(s) is the value of the function X (z) , analytic outside L , on the upper sides of 

the cuts 

(n is the number of cuts, ai and bi are the abscissas of the left-hand and right-hand 

ends of the i-th cut). The function X’(X) is imaginary on L and reaf outside J% 
Therefore the new function 

F (2) = cp’ (2) - 9 x (2) $j$ g, (2) (2.2) 

is analytic outside A, except at the zeros of the polynomial P (z) (where it has poles 

of appropriate order) and possibly at a point at infmity. 
For the functions h,(s) of the form (2. l), the boundary value problem (1.12) takes the 

form 
for y = 0, 5 on L Re F (z} = ~,(s)&,(s) 

for y = 0, I outside L Im F (Z) = 0 

a31 

The solution of this problem is given by the Keldysh-Sedov formula, modified some- 
what in the case of the presence of poles for the unknown function F (2). Then, the func- 

tion cp (z) is determined from the ordinary linear differential equation (2.2) of the first 
order. To avoid the overloading of the presentation, we carry out the more detailed com- 
putations only for the case of a single inclusion. 

Let us assume that the thickness of the elastic inclusion varies according to the law 

2P(x) 
h(s) = - 

i l/d - la Q (4 
e-<x<4 

Here P (x) and Q (2) are some polynomials with real coefficients. 
The analytic function 

(2.4) 

(2.5) 

must satisfy the following boundary conditions: 

for y = 0, I 5 I < 1 Re 8’ (4 = Mel 270 (~1 GL6) 

for y=o, 1 I 1 > 2 ImF (2) = 0 

The solution of the boundary value problem (2,6) can be written in the following form : 
. 

where L (z) is some polynomial with real coeffgcients. Solving the first order differ- 
ential equation (2.5) with respect to up (z), we find 

(2.7) 

Here 



504 O.V.Sotkilava and G.P.Cherepanov 

90 (-7-j = exp - 
-i s (x+i)E1y’za-z2 

2PP (4 Q (4 a } 
The polynomial L (z) is determined from the condition of the vanishing of the func- 

tion ‘p (z) at infinity (since the resultant of the forces applied to the inclusion is assumed 

to be zero) and form the condition of the analyticity ofthe function rp (z) at the zeros 
of the polynomial P (2). 

With a function of type (2.4) we can approximate, with any degree of accuracy, any 
continuous function h (z) on any finite interval, if it vanishes at the extremities of the 

interval. Therefore, the solution of the class of problems under consideration can beused 
as an approximate effective method of solution also in the general case. (This method 
has been indicated in the book [2]). 

By a simple transformation, the case of a nonhomogeneous inclusion. when E,= El(s), 
can be reduced to the preceding one. 

The case of a periodic system of inclusions along the 

In this case, an effective solution of the boundary value 
for coefficients k,(z) of the form : 

hl (z) = ix+ (5) gg+ 

s-axis also presents interest. 
problem (1.12) can be obtained 

The functions X (2) and 8’ (2) are as follows: 

X (2) = v sin” a-m/XL - sin2 d/2L 

F(z) = q'(z) _ z+x(z) ;g;; cP@) 

Here 21 is the length of one inclusion and 2L is the period. 
The boundary value problem (2.3) for a periodic system of cuts L , with the aid of 

the conformal mapping 
w = sinnzi2L (2.8) 

reduces to the already considered case of one cut in the plane w 

3. Semi-infinite inclusion. I*. An elastic inclusion in the 
f o P m o f a thin wed g e . Let us assume that the thickness of the inclusion varies 
according to the law 

ft (z) = - 2ax (a-=sg1, r-CO) (3.1) 

where a is the opening angle of the wedge. In this case the function 

3Li(5) = E, / 2ax (3.2) 

and the corresponding boundary value problem for the determination of the function 
cp (z) has the form 

for y = 0, II: < 0 Re ‘p’ (z) = - @ Lt)fl Im cp (z) 
(3.3) 

for y = 0, 2 > 0 Im cp (2) = 0 
The boundary value problem (3.3) admits the following group of transformations : 

2’ = Cg, CpI = c,rp (3.4) 

where c, and C, are arbitrary real parameters. Therefore, in the case under consider- 
ation, the solution of the boundary value problem (3.3) has the form [2] 
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cp (2) = A,+ (3.5) 

where A is an arbitrary real coefficient. Substituting (3.5) into (3.3), we obtain the 

following characteristic equation for the determination of h: 

+a% 

b + 1) El 
= -tgnh (3.6) 

The roots of the Eq, (3.6), as is obvious from the graphic representation of the solution. 

are situated on the segments (112, i), (3/2, 2), . . .(-l/2, -I), (-3/2, -2) . . - 
of the real axis, one in each of these segments, As it follows from the theorem on homo- 
geneous solutions [2], the solution of the correct houndaty value problem corresponds 
to a unique root, situated on the segment (I/2, 1). The dependence of the magnitude 

of this root on the dimensionless elasticity coefficient of the inclusion 

E,* = (“c + 1) El 
+a 

is represented in Fig. 2. As generally for 

problems of class N, the coefficient A is 
assumed to be given in advance [2]_ 

Analogous self-similar solution takes 
place for an elastic inclusion in the form 

Fig. 2 
of a wedge with an arbitrary opening angle 
h, and also for an arbitrary number of 

different inclusions of this type. In each of these problems we obtain its own transcen- 
dental equation for the determination of the number A. 

2O. An elastic inclusion of parabolic form. Assume that the thickness 
of the inclusion varies according to the law 

h (4 = B I v: I (x < 0) 

where p is a specified real thickness parameter, 

The function F (z) 
F (z) = (p’(z) - @++;;f? ‘p (z) (3.7) 

must satisfy the following boundary conditions: 

for y = 0, 2 < 0 Re F (z) = 0 

for y = 0, r > 0 Im F (z) = 0 

The solution of this boundary value problem is determined except for the arbitrary real 
factors KI and B 

F(z)= a,& 4-W/;: 

Solving Eq, (3.7) with respect to cp (z) and determining B, we find (it is assumed that 
for z + 00, y = 0 we have a, = CT~) 

4. Pinit lnclutionr of a particulrr form. We assume that along the 
contour of the elastic inclusion there exists some specified jump in the displacement, 
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for example because of the difference of the initial temperatures of the inclusion and 
of the basic material; at infinity the stress or, is constant and equal to or,m, while the 

remaining stresses are equal to zero. In the case under consideration the boundary value 

problem has the form 

for .Z_/ = 0, [rl>ZImrp(z)=O 

for 2 -+ 00 cp’(z) = l/&O5 

For y = 0 the following formulas hold : 

6, = 2Recp’(z) - l/% Use, Txtl = 0 

6, = BRecp’(z) + l/s~~~~, 2;, = zUz = 0 

1”. A single elliptic inclusion. We assume that the thickness of the in- 

clusion varies according to the law (p is a specified real thickness parameter) 

h@) = PW2 --isI, P<l (--l<s<4 

The auxiliary function 

F (2) = cp’ (z) - ;u;;i;;T; 

must satisfy the following boundary conditions: 

for y = 0, 1x1 <t 

Re F (z) = E,aAT - 1/4~yoo 

for y = 0, 1 t I > I Im F (z) = 0 

The solution of the boundary value problem (4.4) has the following form : 

F@l=a- v&z 

(4.2) 

(4.3) 

(4*4) 

(4.5) 

Solving Eq. (4.3) we obtain the function q (2) in the form (2.7) where the integral is 
taken between the limits I and z, the function F (z) is given by the formula (4.5), 
while cpOfz) is as follows: 

4)0 (2) = (z + l/z”--)-A, h = @ $; E1 

With the aid of the formulas (4.1) and (4.6) we find the stress or, 

(4.6) 

a,= 2aE,AT - _ Jfz2 - 1% 
F (x) cpo (d.) dx 
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We note the following formulas : 

bJf/r 
for z-t1 q’(z)= - - 

1/2@--I) 
i-O(i) 

for y=o, x-+l+Er Q,=- 
bV_iTt 
fz--_l (El<4 

(4‘ 7) 

Comparing (4.7) and (3,12), we obtain 

KI = -2bfil 

2** A periodic system of inclusions. We consider an elastic body with 
a periodic system of inclusions of the following form (p is a constant, b < 1): 

h (z) = PE 1 l/sin2 nx/2L - sin2 nZ/2L 1 (4.8) 

We assume that along the cuts there exists some initial constant jump in the displace- 
ments, just as in the previous problem ; at infinity the constant stress or, is equal to oyo3, 
while the remaining stresses are equal to zero. With the aid of the transformation (2.8) 
we switch from the physical plane z to the parametric plane of the complex variable 

W. The exterior of the periodic system of cuts in the plane z corresponds in a one-to- 
one manner to the infinite sheeted Riemann surface w with a cut along 

(- sin nl I 2L, sin nl l2L) 

Making use of the method of solution of Sect. 2 and of the results obtained for the inclu- 

sions, the solution of the problem under consideration can be written in the form (2.7), 
where the integral is taken between the limits 1 and z and 

F (z) = a - b sin g (sin2 .?$- _ sin2 _Z!.‘-“* 
2L ) 

‘po (2) = exp {- 

(4.2) 

for z--t1 q’(z)= - 
b.r/ 

L$t,z&= 
LA l’i,- 1 

KI = - 2bv2L tg nl/2L 

3O. Sharp inclusions. Assume that the thickness of a single inclusion varies 
according to the law (an elongated oval with pointed ends) 

h (5) = fl z-2 1 (12 - z2p I @ e 1) (4. IO) 

As before. we consider as given: on the cut (- I, +Z) the initial (residual) strain 
due to the difference of the inital temperatures, while at infinity, the constant stress 

OY m. The solution of this problem, obtained by the general method of Sect. 2, has the 
form (2.7) where the integral is taken between the limits 1 and z, while 
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Obviously, the presence of the cusp at the inclusion removes the singularity at the ex- 

tremity of the inclusion. 

6, An elr:tlc inclurlon of conlt8nt thicknsrr. Let us assume that a 
homogeneous elastic inclusion has a constant thickness 

h (2) = h = con& (5.1) 

We will assume that along the contour of the elastic inclusion there exists some given 

constant initial displacement 2u,. At infinity the stress uy is constant and equal to cryrn, 

while the remaining stresses are equal to zero. 

The fundamental relations and the boundary value problem in this case take the form: 

for y = 0 u = q-Imqqz), L511-bx=5y= (5.2) 

(J@ = ZRerp’(z) = ‘/$bpw 

for y = 0, lxl<l (5.3) 

Re cp’ (2) = +wW + 6 

for y = 0, I 2 1 > I Im cp(z) = 0 

for 2 + 00 rp’(z) = V,(T~~ 
Here 

The constant e is not equal to zero at the endpoints of the interval (- 1, + 1), there- 
fore it cannot be approximated by a linear combination of functions of the type (2.4). 
For the solving of the boundary value problem (5.3) we apply the asymptotic method of 
expansion with respect to small and large values of the parameter e (the method is ex- 

plained in [ 21). This method is effective also in more general cases of nonhomogeneous 
problems of the theory of elasticity and not only for thin inclusions. 

lo. The solution for small a. In the case E <I ,we seek the solution of 

the boundary value problem (5.3) in the form 

cp (4 = cpo(z) + w4z) + ff%J,(z) + l . l (5.4) 

Here ‘PO, ‘PI, ‘p2, . . . are u~nown functions, S ubstitutlng (5.4) into the condition 

(5.3), we can obtain the following chain of standard Dirichlet boundary value problems 
on the cut (- 1, -j-1): 

(0) for y = 0, 1 x 1 < 1 Re q,‘(z) = 6 
(5.5) 

for 2 + 00 rpo’(Z) = ‘/*(Jyp 

(1) for y = 0, Ix I<1 Rev,'(z)= 

for 2 -+ 00 cpr(z) -+ 0 

(2) for Y =O, Ix l<l Recp,‘(z)= $Imcp&) for z -+ 00 VT(z) -+ 0 
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and so on. The solution of these problems can be easily found successively, applying the 
known Keldysh-Sedov formula. 

2*. The solution for large &. In the case a> 1, we seek the solution 

of the boundary value problem (5.3) in the form 

cp (4 = ‘PO (2) -!- + ‘PI (z) + $ cPa (z) (5.6) 

Substituting (5.6) into the condition (5.3), we obtain easily the following chain of stand- 
ard Dirichlet boundary value problems for the half-plane: 

(0) for y = 0 Im (f. = 0 (5.7) 

for 2 3 00 r@,‘(z) = l/4$ 

(I) for y = 0, 1 z I < 2 

Im c&J = h Re ‘po’ - Sh 

for Jj=O, f x f > I Im q,(z) = 0 

for 2 -+ 00 f&(Z)+ 0 

(2) for y = 0, I II: I < I Im cp&) = h Re cp1’(4 

for J/ = 0, i 5 I > 1 Im cp&l = 0 

for 2 --t 00 rps(Z) + 0 

and so on. The solution of these problems can be easily found successively, one after 

/ another. 

1.o ciypy" ,/ 
In order to find the solution for intermedi- 

/ ate values of E we apply a combination of 
/ 

0.5 
AC==-- different asymptotic expansions for small and 

large e. In some cases, practically good 

(i. e. very close to exact) results are obtained 
(r ! 2 /L/h if we restrict ourselves to the first two-three 

Fig. 3 terms of the expansion with respect to E and 

1 / a. We note that similar methods are 
widely used in the theory of boundary layers. 

Kestricting ourselves to the first approximation, the solution can be written as : 

for e>l Cp~(z)=~6ym+ 
2Ih (‘.qrm - 6) 

ne (9 - 4 

In particular, the stress ok at the point y = 0, x = 0 of the inclusion is 

(5.9) 

for E(( 1 

for 8)) 1 

(5.10) 
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On Fig. 3 the continuous line represents the approximate dependence of the dimension- 
less stress o, / UT at the point 5 = 0, y = 0 of the inclusion in the case v,, = 0 
for different intermediate values of the dimensionless parameter et / h, obtained by the 
combination of the asymptotics. The broken lines correspond to the asymptotic formu- 

las(5.10). 

0, The onolytir of the brittle fracture of bodisr with thin slsr- 
tic inclurionr. According to the general approach [Z], the criteria for the initia- 

tion of brittle fracture in a body with thin inclusions are formulated in the following way: 

the principal coefficient in the expansion of the stress function at the endpoint of the 
inclusion must attain at the moment of local fracture some constant of the given consti- 
tuent material, This constant may depend only on the strength of the basic materialand 
of the inclusions and also on the strength of the coupling and on the form of the inclu- 
sions at its end ; however, it does not depend on the form of the ‘body, on the exterior 
loads and on other similar factors. 

Making use of the solutions of the particular problems, obtained in Sects. 3- 5, and of 
the criteria of local fracture, the conditions for the absence of fracture can be written 

in the form of the following inequalities: 

one elliptic inclusion (formulas (4.6) and (4.7)) 

a periodic system of inclusions (formula (4.9)) 

one pointed inclusion (formula (4.10) ) 

_ 8 $?j.@3% 
-=<5, 

(x +l)am v/1 

one inclusion of constant thickness (formulas (5.8) and (5.9)) 

Here Kl,, &, Kacr 6, are constants of the constituent material which have to be 

determined experimentally. 
We note that the constant K,, has the dimension of a force multiplied by length, 

while the constants KIC and K,, have the dimension of a force multiplied by length 

to the power 3/2. It should be stressed that for inclusions with smoothly rounded or trim- 
med ends the obtained singularities correspond in fact to some intermediate asymptotics 
of the exact solution, valid at distances from the endpoint of the inclusion which are 
large in comparison with the radius of the rounding or with the thickness of the inclusion, 
but small in comparison with the length of the inclusion. 
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The plane problem of rectilinear crack propagation in an elastic medium 

subjected to arbitrary variable loads is considered. The position of the crack 

tip is given as an arbitrary monotonically increasing differentiable function 
of time such, that the velocity of crack propagation at any time is less than 
the Rayleigh wave velocity. An expression is obtained for the stresses on the 

crack plane ahead of the tip, particularly the stress intensity factors at its tip. 

A fracture criterion permitting determination of the law of crack tip propagation un- 
der given external conditions is used to analyze crack propagation in fracture mechanics. 

In particular, the Griffith energy criterion which can be written as [l] 

can be used for an ideally brittle, linearly elastic medium. 
Here n is the shear modulus, a and b are the longitudinal and transverse wave velo- 

cities, v is the velocity of crack propagation, 7 (v) is the effective surface energy 

which is considered a characteristic function of the crack propagation rate for a given 

material, and ka, kz, k, are the stress intensity factors for the three main modes of frac- 

ture : tensile, inrplane shear, and anti-plane shear (longitudinal shear), respectively. The 
function R (s) vanishes at the points s = & c-r, where c is the Rayleigh wavevelocity. 

In order to apply the criterion (0.1) to a specific problem, the stress intensity factors 

ki must be known as functionals of the crack tip motion for which the solution of the 
corresponding dynamic problem of elasticity theory must be obtained for an arbitrary 
crack tip motion. This has been done in [2 3 for the particular case of an anti-plane shear 
crack. This case is simplest since only transverse waves polarized parallel to the crack 
edge originate. Recently Freund p] found an expression for the intensity factor for a 
semi-infinite tensile crack being propagated at piecewise-constant velocity under the 
effect of static loads by using a clever semi-inverse method. Considering propagation 
at an arbitrary variable velocity as the limit case of a piecewise-constant velocity, he 
arrived at the deduction that the expression he obtained is valid even in the generalcase. 
The Freund result possesses two disadvantages. Firstly, this result has no foundation . 


